Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria
نویسندگان
چکیده
Thermosulfurimonas dismutans S95(T), isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5'-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood-Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents.
منابع مشابه
Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria
Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissu...
متن کاملGenome Sequence of a Sulfate-Reducing Thermophilic Bacterium, Thermodesulfobacterium commune DSM 2178T (Phylum Thermodesulfobacteria).
Here, we present the complete genome sequence of Thermodesulfobacterium commune DSM 2178(T) of the phylum Thermodesulfobacteria.
متن کاملComplete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)
Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isola...
متن کاملGenomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group
Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2(T). A total...
متن کاملComplete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds
Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves ...
متن کامل